skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Shao, Min"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract. Anthropogenic secondary organic aerosol (ASOA), formed from anthropogenicemissions of organic compounds, constitutes a substantial fraction of themass of submicron aerosol in populated areas around the world andcontributes to poor air quality and premature mortality. However, theprecursor sources of ASOA are poorly understood, and there are largeuncertainties in the health benefits that might accrue from reducinganthropogenic organic emissions. We show that the production of ASOA in 11urban areas on three continents is strongly correlated with the reactivityof specific anthropogenic volatile organic compounds. The differences inASOA production across different cities can be explained by differences inthe emissions of aromatics and intermediate- and semi-volatile organiccompounds, indicating the importance of controlling these ASOA precursors.With an improved model representation of ASOA driven by the observations,we attribute 340 000 PM2.5-related premature deaths per year to ASOA, which isover an order of magnitude higher than prior studies. A sensitivity casewith a more recently proposed model for attributing mortality to PM2.5(the Global Exposure Mortality Model) results in up to 900 000 deaths. Alimitation of this study is the extrapolation from cities with detailedstudies and regions where detailed emission inventories are available toother regions where uncertainties in emissions are larger. In addition tofurther development of institutional air quality management infrastructure,comprehensive air quality campaigns in the countries in South and CentralAmerica, Africa, South Asia, and the Middle East are needed for furtherprogress in this area. 
    more » « less
  3. Abstract To quantify the volatility of organic aerosols (OA), a comprehensive campaign was conducted in the Chinese megacity. Volatility distributions of OA and particle‐phase organic nitrate (pON) were estimated based on five methods: (a) empirical method and (b) kinetic model based on the measurement of a thermodenuder (TD) coupled with an aerosol mass spectrometer; (c) Formula‐based SIMPOL model‐driven method; (d) Element‐based estimations using molecular formula measurements of OA; and (e) gas/particle partitioning. Our results demonstrate that the ambient OA volatility distribution shows good agreement between the two heating methods and the formula‐based method when assuming ambient OA was mainly composed of organic nitrate (pON), organic sulfate and acid groups using the SIMPOL model. However, the element‐based method tends to overestimate the volatility of OA compared to the above three methods, suggesting large uncertainties in the parameterizations or in the representativeness of the molecular measurements that need further refinement. The volatility of ambient OA is generally lower than that of the laboratory‐derived secondary OA, emphasizing the impact of aging. A large fraction at the higher and lower volatility ranges (approximately logC* ≤ −9 and ≥2 μg m−3) was found for pON, implying the importance of both extremely low volatile and semi‐volatile species. Overall, this study evaluates different methods for volatility estimation and gives new insight into the volatility of OA and pON in urban areas. 
    more » « less